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Abstract

A system of incident, reflected and transmitted plane SH-waves is diffracted by an interface flaw in two dissimilar
linearly elastic anisotropic half-spaces. The half-space solids have single planes of material symmetry. These coincide,
but the two sets of principal material axes in the common plane have arbitrary orientations with respect to each other
and to the interface.

Exact transient solutions show the effects of material properties and orientation. Increasing the degree of non-
orthotropy causes the maximum and minimum shear wave speeds in each solid to deviate more from the isotropic limit.
For a non-orthotropic/isotropic bimaterial, this also causes the dynamic stress intensity factor to decrease, and the
factor always falls below the factor value arising for a homogeneous solid with properties identical to those of the
isotropic constituent.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Analyzing dynamic response to elastic waves is an accepted procedure for the characterization of
laminates (Liu et al., 2001), and dynamic loading of laminates is an important design consideration (Ma
et al., 2001). The presence of gaps, or flaws, in the interfaces between layers causes wave diffraction that can
influence the results of such studies. Wave diffraction by interface flaws is also a stress-raising mechanism
(Achenbach, 1973; Miklowitz, 1978) that can trigger delamination (Brock and Achenbach, 1973).

As the latter-most work attests to, studies of wave diffraction by interface flaws have often involved
perfectly bonded (rigidly welded) isotropic bimaterials. In this article, therefore, diffraction of plane hori-
zontally polarized shear (SH) waves by an interface flaw between two dissimilar linearly elastic anisotropic
half-spaces with only single planes of material symmetry (Eshelby et al., 1953) is considered. The flaw is
semi-infinite, and the single material symmetry planes of the half-space solids coincide. However, their
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principal material axes in the common plane have arbitrary orientations with respect to each other, the
interface, and the travel direction of the incident wave.

Exact transient solutions for largely arbitrary incident plane SH-waves are obtained, and typical full-
field expression for the anti-plane displacements in each solid presented. The dynamic stress intensity factor
is also found. Both quantities are sensitive to both material properties and to principal material axis ori-
entation. The degree to which the solids are non-orthotropic is especially important. The effect of properties
and orientations is often most apparent in the interface shear wave speeds for each solid.

The study begins with the basic equations for the class of non-orthotropic solids with single planes of
material symmetry. The diffraction problem is formulated, and exact solutions for both the plane wave
assembly associated with the incident SH-wave and the scattered fields are presented. The insights gained
on the effects of non-orthotropy are based both on the solution expressions and numerical calculations.

2. Basic equations

Consider a homogeneous linearly elastic solid characterized by the generalized Hooke’s law (Sokolnikoff,
1956)

011 cn cpp ez 0 0 ci en

02 ¢y c» cn 0 0 cx% &2

033 | _ |1 €3 €33 0 0 c3% €33 (1)
03) 0 0 0 Cq4 C4s 0 2832

J13 0 0 0 Cs4 Cs5 0 2813

021 c1 C2 Ce3 O 0 ces 28

in terms of the Cartesian coordinates x; (k= 1,2,3), where ¢, = ¢y are the elastic constants. Discussion
of their relation to crystallographic properties is found in Nye (1957) and Theocaris and Sokolis (2000).
The form of (1) shows that the Cartesian system defines the principal material coordinates, and that the
x1x;-plane is a plane of material symmetry. The strains ¢; and stresses ¢;; satisfy, in the absence of body
forces,

26 = 2e5 = wi; + g, 04y = Pk, 0y = 0j; (2)

Here p is the mass density, u; is the displacement in the x;-direction, (),;= 0()/0x;, and (-) signifies time
differentiation. Eqgs. (1) and (2) support the anti-plane state

u1:Mz=M3,3:0, 011 =0y =033 =07 =0 (3)
and reduce to the system

O3 = CaqU3p + Ca5U3 1, 013 = CssU3 | 1 CasU3) (4a)

0131 + O3 = pii3 (4b)
subject to the positive definiteness requirements (cf. Kraut, 1963; Payton, 1983)
(cas,cs55) >0,  cascss —chs > 0 (5)

No preference is given to either ¢4y Or css, and c45 = 0 in the orthotropic limit (Sokolnikoff, 1956). It is
convenient, therefore, to introduce the parameters

[u—

~ - m
U==(cas+css), v=14]" 6
2(44 55) ; (6)
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and dimensionless ratios

a=, p= (7)

1 1 1
It is noted that (5) does not restrict the sign of c4s, and that y represents, in effect, the degree of non-
orthotropy in anti-plane strain. Eq. (6) defines an average shear modulus z and shear wave speed v in the
x1x,-plane of material symmetry. In the isotropic limit (6) gives the single classical modulus and wave speed
(Achenbach, 1973). In light of (6),

1tf=2 (a=1)+7=(F-1 "+ =1-T 8)
where the dimensionless quadratic
r=af—7y* (0<r<1) 9)

is useful in characterizing material behavior. Its upper bound in (9) arises because (¢, f5,7) are real. Indeed,
I' =1 only when o = =1, y =0, i.e. in the isotropic limit ¢4y = cs5, c45 = 0.

3. Problem formulation

Consider two half-spaces of such materials, designated as solid 1 and solid 2. They are perfectly bonded
along a semi-infinite portion of their interface; a vanishingly thin flaw separates them over the remaining
portion. The solids are dissimilar, but each of their x;-principal material axes is parallel to the flaw edge, i.e.
their x;x,-planes of material symmetry coincide. In this common plane, however, the interface makes an
arbitrary angle ¢, (]¢,| < 180°) with the x,-principal axis of a solid k, where ¢, # ¢,.

For convenience the single Cartesian system (x,y,z) in Fig. | is employed: The z-axis defines the flaw
edge and (y = 0,x < 0) and (y = 0,x > 0) define, respectively, the flaw and the perfectly bonded interface.
No generality is lost by placing solid 1 in half-space y > 0, and solid 2 in half-space y < 0. The xy-plane
coincides with the common plane of material symmetry, and the (x,y)-axes are simple rotations of the
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Fig. 1. Schematic of plane SH-wave system approaching flaw edge (¢ < 0).
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principal material (xj,x,)-axes for a solid k through the angle ¢,. In view of (4a)-(9), with appropriate
subscripts added, one can write the field equations

1 aWk awk 1 aWk aWk

o = Gk g D G = A, o, % 10a

,uk’k “x £y o & " ox ‘o (10a)
O*wy O*wy *wy 1

A 2C, B =—Mu 10b

) + k@x@y+ £ Ezwk (10b)
k

fory>0 (k=1) and y < 0 (k =2). Here wy(x,,?) corresponds to u; in a solid k, ¢ represents time, and
formulas

A = 1+ 3o — Bi) cos 2¢, + 7, sin 2¢, (11a)
By = 1+ 5(Br — o) €08 26y — 7 sin 2¢h; (11b)
Cr = 5(By — o) sin 2¢; + 7, cos 2¢h, (11c)

define the tensor transformation (4, By, C;) in a solid k of the array (oy, fi;, 7,) due to the rotation ¢, (cf.
Eshelby et al., 1953). The formulas

dd4, dB, dc,

e _ Pk _ 5 kB —1=1-4 12
i, dg, 2 g, B : (122)
Ay +Bi =2, A4Bi—Ci=T, (12b)

are also useful, and it is noted that (12b) define invariants of the transformation.

Both solids are at rest when a horizontally polarized shear (SH) wave in solid 1 is for # < 0, as depicted in
Fig. 1, incident upon the flaw at a travel angle of yy with respect to the interface, where 0 < y» < 90°. This
wave induces, in turn, reflected and transmitted plane SH-waves, with travel angle (Y, ¥,), respectively.
The three-wave system reaches the flaw edge at t = 0 and is diffracted there. Linearity of (10a) and (10b)
allows the superposition

wi=wi+w +w (y>0), wy=wi+w (y<0) (13a,b)

Here w} is the scattered wave displacement field in a solid &, (w', w") is the incident and reflected wave field
in solid 1, and w' is the transmitted wave field in solid 2. All fields satisfy (10a) and (10b) and, in addition,
the initial conditions

wp=0 (1<0) (14)
hold, and continuity requires that

w W =w (15a)

oiz +o.=0. (y=0) (15b)

yz
Perfect bonding for y = 0, x > 0 and traction-free flaw surfaces for y = 0, x < 0 can then be imposed for
y =0, t > 0 as conditions
wy; =0 (x>0) (16a)

S_

Wi

0L =0, = 7032 (x<0) (16b)

yz
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Here ¢° is given by either side of (15b). In addition, w} should be finite for finite 7 > 0 and continuous in

vz

y>0 (k=1)and y <0 (k = 2). Their gradients, however, may exhibit finite discontinuities at wavefronts,

and integrable singularities at (x,y) = 0.

4. Plane wave system

The plane SH-wave system consists of the displacements

Wi:/gi V(&)dé, fi:t+fcosw+)—/sinw>0 y>0) (17a)

0 v v
ér x y .

wr:/ V(&) d¢, & =t+—cosy,+=siny, >0 (y>0) (17b)
0 U Ur

Wt:/gl V(&) dé, 5l:t+icoswt+zsin%>0 (y<0) (17¢)
0 Ut Ut

where (v, v;, v;) are the travel velocities, and (V, V;, ¥;) are bounded and at least piecewise continuous. In

light of (6), (10b) and (11a)—(11c)

U:\/ZEH Ur:\/A_rEl, 01:\/14_52 (18)
where the positive dimensionless quantities
A =1+ 3(on — By) cos2(; + ) + 7, sin2(¢y + ) (19a)
A =1+ %(051 — By)cos2(¢py + ) + y,sin2(p; + ) (19b)
Ap = 143(02 — B) cos2(p, + ) + 7, 5in 2(h, + ¥, (19¢)
arise. The continuity condition (15a) and (15b) requires that
cosy cosy, cosy, (20a)
v
Vr C1+Bl tanlp—l(Cz—f—thanl//t)
h_ e (20b)
14 Z(Cz + B, tan lﬁt) C, — B tan l//r
n_ B (tany — tany,) (200)
V. I(Cy+ Bytany,) — C; — By tanyj,
where (11a)—(11c) holds and the dimensionless ratios (Brock and Achenbach, 1973)
L R— (21)
My P2

are introduced. In view of (19a)—(19c), (20a) can be solved for the reflected and transmitted travel angles

B, _ 2 2
2y = ~tan-! 2cosyy/AiB; — I'y cos? y ~ tan-! 2C) cos* (222)

2cos2y — 4; B + C;sin 2y
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20, = tan”! 2V/Im cos /4By — ImI', cos? i 2ImC; cos® (22b)
2Imcos?  — A4; Ai + 2(1 — Ay)Imcos* Y

in terms of the incident wave angle . The argument of the radical in (22a) is non-negative for all 0 <
Y < 90°, but existence of real values for (22b) when

ImI',B, > I'1B, (23)

requires the restriction

_ 2\/32\/ lmF2B1 — Fle _ ZBzcl
2 > tan™' —tan™! 24
v > tan Im(2B; — T») M Iml, +2(1 — 4))Bs (24)

In the isotropic limit (o, = f, = 1,y, = 0) results (17a)—(22b) reduce to those given by Brock and Achen-
bach (1973). Egs. (20b) and (20c¢) can than be satisfied when

V() = (25a)
1/?911‘11
T 1 [ 1 . 71 . ]
Vi(&) = — (Ci+sinyy) — y/———=(C, + siny,) (25b)
,/EP]Ai 4 \/;\/A_t
V(&) = ) B (S\l;l_l_ﬁ Si\‘/l_‘ﬁ‘ ) (25¢)
HPl

Here 7(¢) is the traction induced by the incident wave in solid 1. The dimensionless parameters
(D, C;, Cy, Cy) are

ffamw>fwmw> (26)
and, cf. (11a)~(11c) and (19a)~(19¢),
G =By — w)sin(2¢; + ) + 7, cos(2¢; + ) (27a)
Co =3By — o) sin(2p, + ¥,) + 7, cos(2, + ) (27b)
Co = 4(By — o) sin(2¢, + W) + 75 cos(2hs + ) (27¢)

In view of (17a)—(22b), the traction field removed from the flaw surface by (16b) is

X X
a?,_,:AOT(t—i—;cosxp)(y:O,x<0,t+Ecos¢>0) (28a)
[ B . siny  siny,
Ay =1\ ——— R —— 2
’ V;Dm(q“‘“‘”‘)(ﬂi ) (286)

where 4, is a dimensionless traction amplitude factor.
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5. Scattered waves: solution procedure
Conditions (16a) and (16b) can in view of (28a) be put in Wiener—Hopf (Achenbach, 1973) form:
wi —w) = W(x,t) (29a)
S S X
0, =0,y = 2(x,1) — A0T<t +; cos lﬁ)H(—x) (29b)

Here H() is the Heaviside function, and (W, ) are, respectively, the interface flaw surface slip (relative
displacement) and traction ahead of the flaw edge. Thus,

2=0 (x<0) (30a)
W=0 (x>0) (30b)
W—0 (x—0-) (30c)

and W is continuous for all x < 0 except perhaps when the argument of 7 vanishes, and ¥ may be in-
tegrably singular when x — 0+. Application of unilateral (Sneddon, 1972) and bilateral (van der Pol and
Bremmer, 1950) Laplace transforms

F) = / Fx e di (31a)
0
= [ Fweras (31b)
where (p, q) are, respectively, positive real and imaginary, to (10a), (10b), (14), (29a) and (29b) gives
oar We P2y —a We P2y
o= aWe T gy, = A ETE ) (322)
Hyay + fhas Hyay + poar
StV n AL, ) (32b)
war + psap plsy —q)
In these equations
sy == (33a)
Uy 1%
B2y =Cg+a, Bh=0Cq—a (33b)
1 T,
ar =T\t = si=———, cu=1/% k=1,2 33c
& K\ Sk 3 o), & B ( ) (33¢)

where (11a)—(11c) holds. Here (s, ¢y vy) are, respectively, the shear wave slowness and speed in a solid k
along the interface, and (sy,v,) are, respectively, the plane wave system slowness and speed along the
interface. In view of (6), (21) and (33b) the relation (23) that triggers restriction (24) arises when the
interface shear wave speed in solid 2 exceeds that in solid 1 (source of the incident wave). In light of
(22a)~(24),

Sy > l’IlaX(S1,S2) (34)
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Requiring Re(a;) = 0 in the g-plane with branches Im(g) = 0, |Re(g)| > s, guarantees that (32a) is bounded
above.

Because (X, ) arise from the scattered wave field, their transforms exist for, respectively, Re(q) >
—min(s;,s;) and Re(g) < sy. The T-term in (32b) exists for Re(g) < sy, its singularity is isolated, and the
coefficient of W is analytic in the strip |Re(g)| < min(sy,s2). Therefore, a standard (Noble, 1958; Achen-
bach, 1973) decomposition process can be used to re-write (32b) in a form that equates a term that is
analytic for Re(g) > — min(s, s2) to one that is analytic for Re(q) < s,. Because there is a common strip of
analyticity, both terms are, by Liouville’s theorem, equal to the same bounded entire function of (p,q).
However, (30c) requires in light of (31b) that pgW be bounded as |¢| — oo, which implies that the entire
function is in fact zero. Two equations result and, for the case s, > 51, can be solved to give

< AT { G (sy)ay (61)}

> = 1 — 35a
ool G (5

7 foT (1 4 2) Gi(sx//)G:(Q) 1 (35b)
TN I') ay(sy)ay (q) sy —q

In (35a) and (35b) the quantities
I [ lap(r) do
1 - !
nG.(q) - [1 tan Z(0) g (36a)

a(q)=T"Vsctq, ale)=VTn@—st (k=12 (36b)

In (36b) a° are analytic in the overlapping regions Re(q) > —si, Re(g) < s;. In (36a) G are analytic in the
overlapping regions Re(g) > —s1, Re(g) < sy, and

ay + lay
a(1+1,/7)

Results for s; > s, follow by replacing / with 1// in (35a)—(37), interchanging the subscripts (1,2), and
recognizing that the restriction (24) can now arise.

G.(9)G-(q) = (37)

6. Maximum and minimum interface shear wave speeds

The interface shear wave speed parameters ¢, play a key role in (32a)—(37). In light of (12a) and (12b) it
can be shown that they achieve extremal values c¢f for the principal material axis orientations
(¢, i — 180°, ¢, + 180°). For y, =0,

1

¢ = tan™! o {%(ﬁk —oy) /1 =T} (38a)

i =\1£/1-T} (38b)

In Table 1 (Panels A and B) values of (38a) are given for various (positive) values of y, for, respectively, the
cases (o = B, B = 204). The corresponding maximums and minimums (38b) are also given. The entries
show that increasing the degree of non-orthotropy y, increases the maximum interface shear wave speed
(¢f) beyond the isotropic limit (¢ = 1), but lowers the minimum (¢, ) below the limit. In Table 1 (Panel A)
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Table 1

Maximum (+) and minimum (—) shear wave speed parameters and orientations
Tk I b () i o (©) %
Panel A: o, = f,
0.05 0.9975 45 1.0247 —45 0.9747
0.1 0.99 45 1.0488 —45 0.9478
0.25 0.9682 45 1.0854 —45 0.9065
0.5 0.866 45 1.1687 —45 0.7962
0.75 0.6614 45 1.2577 —45 0.6466
0.9 0.4359 45 1.3234 —45 0.4989
Panel B: f; =2
0.05 0.8864 85.7 1.1563 —4.7 0.8142
0.1 0.8789 81.7 1.161 -8.3 0.8075
0.25 0.8264 71.6 1.1902 —18.4 0.7638
0.5 0.6389 61.9 1.2653 —28.1 0.6317
0.75 0.3264 57 1.3493 -33 0.4234
0.9 0.0789 55.2 1.3999 —34.8 0.2007

qﬁ,f = £45° always, but Table 1 (Panel B) shows that increasing y, causes a greater deviation between the
principal material axes and the interface. The orientations qﬁki differ by 90° in both tables.

7. Scattered wave full fields

Combining (35b) with (32a) gives the scattered wave displacement transforms. The inversion operation
for (31b) is (van der Pol and Bremmer, 1950)

) = 5= /fe”‘”dq (39)

where integration is along a Bromwich contour. A standard (de Hoop, 1960; Brock and Achenbach, 1973)
technique changes this contour to one in the complex ¢-plane that gives an integrand that has the form of
the unilateral transform operation (31a). The scattered field follows by inspection. For an incident step-
stress pulse 7(¢) = TH(&), the result for (y > 0,5, > s1) is

W _ AT G (sy) /t Re[a;(fh) 1 ] (t—1)dr
Vo, a5 (se) s Gilq) sy —q1 | VTi\/72 =5}
ATy A (t—t0)H(t—t) ( C  cun cosy < 0) (40)

+ﬁ1m B i-devy \ B VA
The result for (y < 0,5, > s1) is

Wi = _A(lTi GI(SW) /’ Re[a; ) 1 ] (t—1)dr A(lTi Gi(sy)

i, 4 (sy) J. G(q2) sy —q2 | JTH/72 T a; (sy)

7)

) 2
8 /52"2 A(l[h)G+(CIh) (f — H(t - T) dT <x . gy > s—2}’2>
zh Sy —=dn  \Ta/s3r3 — 12 B,” s

171

§212

A()Ti Ai (l — tz)H(l - tz) ( C2 Cr2l

— x——y+ cosnp<0> (41)
= B 2 cod?
/,Uzpz 2+/Ai — ¢, cos?

B, A;
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In (40) and (41) it is understood that integrals vanish when the lower limit exceeds the upper limit. The
gr (k=1,2) is the complex Cagniard contour parameterization

Iy
gk = (x— —y> +i —IyI\/ —sirl, o= \/ x - ﬁyz (42)
k

Result (41) also has a purely real Cagniard contour parameterization and integrand:

Jog

T+——V\/$5 —T

nqn = <x - B—Zy (43a)

a; (q)ax(q)a)(q)
A9) = (”’\F )ﬂrz(sz &)+ DG =) (430)

The first terms in (40) and (41) represent scattered waves that radiate from the flaw edge in the expanding
regions (y > 0,¢ > s7) and (v < 0,¢ > spr,), respectively. The limits imposed on (x,y) identify the last
terms in (40) and (41) as signals that cancel the plane wave assembly traction from the flaw surfaces in the
expanding wedge-shaped regions exterior to the first set of regions. In these expressions

1 |J’| 2 Cy )
t=t A; — A cosy — x4 — (k=1,2 (44
k= Uk\/«<‘/ i By ) )

locate the planar fronts of these waves; (44) follows from (17b) and (17¢) when (v;, Y,, v, ¥,) are eliminated
in terms of (v, ). The limitations on (x, y) identify the middle term in (41) as a head wave displacement in a
wedge-shaped region. Its planar front is defined by

G V
tths1<xB—2)B—2y 53— 53 (45)

Similar results follow when s; > s, except that now the head wave arises in w.

=Y

Y
— A

AT RN

Fig. 2. Schematic of wave diffraction at flaw edge (¢ > 0).
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A schematic of the various wavefronts (incident, reflected, transmitted, scattered) is given in Fig. 2. It is
noted that the expanding regions (y > 0,¢ > sy7) and (y < 0,¢ > s,r;) are elliptical in shape. They are
centered at the flaw edge, and their semi-major and semi-minor axes correspond to the principal material
axes in each solid. The axis tilts with respect to the interface are due to the rotations ¢, in the guise of the
slope parameters C/B;.

8. Traction behavior near the flaw edge

Superposition gives the interface traction as X + a;_ (v = 0,x > 0). Results for X near (x — 0+) the flaw
edge can be obtained directly from (35a) or its counterpart for s; > s, by allowing |¢| — co and keeping
only the highest-order terms. The result is easily inverted with (39) and standard tables (Peirce and Foster,
1956; Sneddon, 1972):

7A0F;/4 Gi(sy) ['T(r)dt
Convx oay(sy) Jo Vi—1

Clearly this term dominates the plane wave assembly contribution ¢°, and the coefficient of 1/,/x is the
dynamic stress intensity factor.

)

+0(1) (y=0,x—0+) (46)

9. Solution behavior: two cases

For insight into the effects of non-orthotropy, two simple but non-standard cases are considered.

Case A: The principal axis orientation for incident wave-bearing solid 1 is defined by (38a). Solid 2 is
isotropic, but its properties closely match those of solid 1 in the sense that / = m = 1. That is, the densities
are identical, the average modulus in solid 1 and the classical modulus in solid 2 match, and the interface
shear wave speed in solid 1 is either a maximum or a minimum. In view of (21)-(24), (38a) and (38b)

Vo=—¥ (¢, =¢7,0 <y <90°) (47a)
W=yt Y =tan! \/1 £ v IC;SIKZCOSM 1 (¢ =T, 0 <y < 90° (47b)
bo=v (=i S <y <o @70

Table 2 (Panels A and B) provides data for (47b) and (47c) for various values of y, >0 when
(o = B4, By = 2a1), respectively. The entries show that non-orthotropic — isotropic transmission of the
incident wave involves an increasing change in travel direction as the degree of non-orthtropy y, is in-
creased. It should be noted that an exception occurs for iy = 45°; then both possible travel directions are
also 45°. Missing entries for yy~ reflect that the inequality in (47c) is violated; that is, a transmitted wave is
precluded for a given combination (y/,7,).

For the less-restrictive (0 <y < 90°) case of the maximum interface shear wave speed (¢, = ¢/,
¢,1 = ¢f ) formula (46) reduces to
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Table 2
Case A: transmitted wave angles for maximum (+) and minimum (—) interface shear wave speeds vs. (y,,¥)
71 15997 (%) 15%0y™ () 30% 97 () 30y () 60% g () 60% YT () TSy () Ty (0)
Panel A: o; = f5;
0.05 19 9.1 31.2 28.7 59.6 60.4 74.7 75.3
0.1 22.1 - 323 27.3 59.1 60.8 74.3 75.6
0.25 28.9 - 35.3 22.2 57.7 61.9 73 76.4
0.5 36.2 - 39.2 0.0 54.7 63.4 69.9 77.5
0.75 41.2 - 424 - 50.8 64.8 64 78.4
0.9 43.6 - 44 - 47.6 65.5 56.6 78.8
Panel B: ; = 20,
0.05 31.8 - 36.8 18.2 56.7 62.4 72.1 76.8
0.1 322 - 37 17.7 56.6 62.5 72 76.9
0.25 34.1 - 38 13.3 55.8 62.9 71.1 77.2
0.5 38.4 - 40.6 - 53.3 64 68.1 77.9
0.75 424 - 43.2 - 494 65 61.2 78.6
0.9 444 - 44.6 - 46.1 65.7 51 79
K /’ T(z)dz
X=—— + O(1 =0,x — 0+ 48
5 | o =05 01 (48)

Here the dynamic stress intensity factor coefficient K is given by

P 2\/?71Fsin¢ (1= T=T1)\/M — cos®

- (49a)
M1+ Vi cosy (1= VI=T)sing + /M —cos'y
M=1++/1-T)cos2y (49b)
1 CT - 1 (C+)2—'L’2 d’[
InF=-— tan™' 1 49¢
n/l v -1 ‘C+cl+\/]\_/[cosnl/ (49¢)

The purely isotropic limit of (48) arises for the diffraction of a plane SH-wave by a crack in a homogeneous
material. Eq. (48) then has the factor Ky = (/v9\/1 — cosy, where v, is the classical (Achenbach, 1973)
shear wave speed. The matching conditions / = m = 1 guarantee that v; = vy, so that the dimensionless
ratio

Koy /1+\/MCOS¢(1—\/1—F1)sint//+\/M—cos21ﬁ

varies only with(y, I'}). It can be demonstrated that
K d < K

K 2F\/T+cosy (1= VI-T)yM - cosy (50)

0<—<1, — (=
<—<1, .

Ky dr,

>>o (0 < Ty <0); geo () — 0) (51a,b)
0

Relation (50) and (51a,b) imply that the diffraction of the plane SH-wave in the non-orthotropic/isotropic
system produces a smaller dynamic stress intensity factor than diffraction in the homogeneous isotropic
material. Moreover, the difference increases as non-orthotropy is increased (y, — 1,I'; — 0). Thus, even
when the properties of the bimaterial are similar, i.e. / = m = 1, proper orientation of the non-orthotropic
constituent can perhaps give an advantage in avoiding fracture over a homogeneous solid identical to the
isotropic constituent.
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Case B: Now take solid 1 as isotropic, with / = m = 1, and the principal axis orientations and interface
shear wave speed parameters given by (38a) and (38b). In this instance,

Vo=~V (2=¢5,0 <y <90 (52a)

1-T,

ot gt ain]
lﬂt—lﬁ <¢2_¢27SIH 1+m

<Y< 90°> (52b)

b=y, YF=sin! \/ iV FVI-Tooos ey <o) (520)

1F 21— T5cos82y

Table 3 (Panels A and B) provide data for (52b) and (52c) for various values of y, > 0 when (o, =
By, B, = 20,), respectively. Entries show that isotropic — non-orthotropic incident wave transmission, like
its case A converse, involves an increasing deviation of incident and transmitted wave travel directions as
non-orthotropy is increased. An exception occurs again for i = 45°, when * = 45°, and missing entries
show that wave transmission is precluded when, in this instance, restrictions (52b) arise for the maximum
interface shear wave speed case.

For the less-restrictive (0 < ¢y < 90°) case of minimum shear wave speed, the dimensionless ratio (50) is
now

K 2F(1—T—=T3)"*\/T+cosy M14+VT-T,

el _ (53a)

KO \/1+ I—cmOSl// smv,b—!—\/l\_/[ 1+\/1—F2

M =sin® + /1 — [ cos* (53b)
1 fYe /c2 —12 dz

lang/l tan~' /I, Tcosy (53c¢)

Here v, = vy, and (5la,b) again holds, but with I'; replaced by I',. Thus, increasing the degree of non-
orthotropy again decreases the dynamic stress intensity factor below the value achieved for diffraction in a

Table 3

Case B: transmitted wave angles for maximum (+) and minimum (—) interface shear wave speeds vs. (7, )
72 159097 (0) 157 () 30%0 YT (0) 30y () 60yt (0)  60% T () TSyt () TSy (9)
Panel A: 0, = f5;
0.05 8.6 18.8 28.6 31.1 60.4 59.6 75.3 74.7
0.1 - 21.6 27 32.1 60.9 59.2 75.7 74.4
0.25 - 26.9 18.4 34.3 62.4 58.2 76.8 73.5
0.5 - 31.7 - 36.7 65.9 56.8 79.1 72.1
0.75 - 34.4 — 38.2 71.6 55.7 82.2 71
0.9 - 35.6 - 38.9 77.7 55.1 85 70.3
Panel B: f, = 20,
0.05 - 28.9 - 353 63.5 57.7 71.5 73
0.1 - 29.2 - 354 63.6 57.6 77.6 72.9
0.25 - 30.4 - 36 64.6 57.2 78.3 72.6
0.5 - 33 - 37.4 67.8 56.3 80.2 71.6
0.75 - 35 - 38.5 74 55.4 83.3 70.6

0.9 - 36 - 39.1 82 54.9 86.8 70.1
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homogeneous isotropic solid. Again, the bimaterial factor vanishes when the non-orthotropy parameter
reaches its limit value of unity.

10. Some comments

This article considered the diffraction of a plane SH-wave by an interface flaw in a bimaterial consisting
of two non-orthotropic linearly elastic solids. Each solid had only a single plane of material symmetry and,
while these coincided, orientations of the principal material axes in the common plane were arbitrary, both
with respect to each other and with respect to the interface and the direction of travel of the SH-wave.

An exact transient analysis gave the full-field displacements in each solid, and the interface traction just
ahead of the flaw edge. These expressions and related formulas showed that the speeds of the incident,
reflected and transmitted plane waves, and the travel directions of the latter two with respect to the former,
are sensitive to the principal material axis orientations, as well as the elastic properties themselves. Study of
the scattered wave field showed that this sensitivity is also manifest in the shear wave speeds in each solid.
Principal material axis orientations for each solid were readily found that guaranteed maximum and
minimum speeds along the interface. Calculations showed that the maximum and minimum values lay,
respectively, above and below the isotropic limit, and that deviations from the limit increased with the
degree of non-orthotropy.

To focus on the effects of non-orthotropy and material orientation, results were specialized for two cases
of a non-orthotropic/isotropic bimaterial. In one, the incident wave arose in the homogeneous solid; in the
other, plane wave transmission was into the homogeneous solid. In both cases, the non-orthotropic and
isotropic properties closely matched, and the principal axis orientations for the non-orthotropic solid were
chosen to give maximum or minimum shear wave speeds along the interface. Calculations for both cases
showed that deviation in the travel directions of the incident and transmitted plane waves increased with the
degree of non-orthotropy, and that non-orthotropy by itself might preclude plane wave transmission.

The dynamic stress intensity factors for these two illustrations showed analogous behavior: Their values
always lay below that for plane wave diffraction in a homogeneous solid of a material identical to that of
the isotropic constituent of the bimaterial. The discrepancy increased with non-orthotropy, and the bi-
material factor could indeed be forced to zero when non-orthotropy reached a theoretical limit.

Control of elastic wave transmission and prevention of diffraction-induced dynamic failure in layered
solids are common research topics (Liu et al., 2001; Ma et al., 2001), and use of elastic property mis-
matching is a well-known aspect of these (Brock and Achenbach, 1973). It is hoped that the present study
has demonstrated, both through its exact results and somewhat general model, and its examination of two
special cases, the importance of considering material orientation and non-orthotropy.

The class of materials considered here lends itself well to anti-plane strain situations. While useful for
insight, these are generally not as applicable as in-plane loading situations. For that reason alone, the exact
results presented here were not fully exploited through e.g. use of more general parameter variations. As
noted by Eshelby et al. (1953), certain tractable in-plane situations can also be studied for this material
class. Interface flaw work is underway on some of these, as well as for standard (Payton, 1983; Brock et al.,
2001; Brock and Hanson, in press) transversely isotropic and orthotropic materials. The present analysis is
serving as a guide.
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