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Abstract

A system of incident, reflected and transmitted plane SH-waves is diffracted by an interface flaw in two dissimilar

linearly elastic anisotropic half-spaces. The half-space solids have single planes of material symmetry. These coincide,

but the two sets of principal material axes in the common plane have arbitrary orientations with respect to each other

and to the interface.

Exact transient solutions show the effects of material properties and orientation. Increasing the degree of non-

orthotropy causes the maximum and minimum shear wave speeds in each solid to deviate more from the isotropic limit.

For a non-orthotropic/isotropic bimaterial, this also causes the dynamic stress intensity factor to decrease, and the

factor always falls below the factor value arising for a homogeneous solid with properties identical to those of the

isotropic constituent.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Analyzing dynamic response to elastic waves is an accepted procedure for the characterization of

laminates (Liu et al., 2001), and dynamic loading of laminates is an important design consideration (Ma

et al., 2001). The presence of gaps, or flaws, in the interfaces between layers causes wave diffraction that can

influence the results of such studies. Wave diffraction by interface flaws is also a stress-raising mechanism

(Achenbach, 1973; Miklowitz, 1978) that can trigger delamination (Brock and Achenbach, 1973).

As the latter-most work attests to, studies of wave diffraction by interface flaws have often involved
perfectly bonded (rigidly welded) isotropic bimaterials. In this article, therefore, diffraction of plane hori-

zontally polarized shear (SH) waves by an interface flaw between two dissimilar linearly elastic anisotropic

half-spaces with only single planes of material symmetry (Eshelby et al., 1953) is considered. The flaw is

semi-infinite, and the single material symmetry planes of the half-space solids coincide. However, their
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principal material axes in the common plane have arbitrary orientations with respect to each other, the

interface, and the travel direction of the incident wave.

Exact transient solutions for largely arbitrary incident plane SH-waves are obtained, and typical full-

field expression for the anti-plane displacements in each solid presented. The dynamic stress intensity factor
is also found. Both quantities are sensitive to both material properties and to principal material axis ori-

entation. The degree to which the solids are non-orthotropic is especially important. The effect of properties

and orientations is often most apparent in the interface shear wave speeds for each solid.

The study begins with the basic equations for the class of non-orthotropic solids with single planes of

material symmetry. The diffraction problem is formulated, and exact solutions for both the plane wave

assembly associated with the incident SH-wave and the scattered fields are presented. The insights gained

on the effects of non-orthotropy are based both on the solution expressions and numerical calculations.

2. Basic equations

Consider a homogeneous linearly elastic solid characterized by the generalized Hooke�s law (Sokolnikoff,

1956)

r11

r22

r33

r32

r13

r21

26666664

37777775 ¼

c11 c12 c13 0 0 c16
c21 c22 c23 0 0 c26
c31 c32 c33 0 0 c36
0 0 0 c44 c45 0
0 0 0 c54 c55 0

c61 c62 c63 0 0 c66

26666664

37777775
e11
e22
e33
2e32
2e13
2e21

26666664

37777775 ð1Þ

in terms of the Cartesian coordinates xk ðk ¼ 1; 2; 3Þ, where cik ¼ cki are the elastic constants. Discussion

of their relation to crystallographic properties is found in Nye (1957) and Theocaris and Sokolis (2000).

The form of (1) shows that the Cartesian system defines the principal material coordinates, and that the

x1x2-plane is a plane of material symmetry. The strains eij and stresses rij satisfy, in the absence of body
forces,

2eij ¼ 2eji ¼ ui;j þ uj;i; rij;j ¼ q€uui; rij ¼ rji ð2Þ
Here q is the mass density, ui is the displacement in the xi-direction, ð Þ;j� oð Þ=oxj, and (�) signifies time

differentiation. Eqs. (1) and (2) support the anti-plane state

u1 ¼ u2 ¼ u3;3 ¼ 0; r11 ¼ r22 ¼ r33 ¼ r21 ¼ 0 ð3Þ
and reduce to the system

r32 ¼ c44u3;2 þ c45u3;1; r13 ¼ c55u3;1 þ c45u3;2 ð4aÞ

r13;1 þ r32;2 ¼ q€uu3 ð4bÞ
subject to the positive definiteness requirements (cf. Kraut, 1963; Payton, 1983)

ðc44; c55Þ > 0; c44c55 � c245 > 0 ð5Þ
No preference is given to either c44 or c55, and c45 ¼ 0 in the orthotropic limit (Sokolnikoff, 1956). It is

convenient, therefore, to introduce the parameters

l
* ¼ 1

2
ðc44 þ c55Þ; v

* ¼

ffiffiffiffi
l
*

q

s
ð6Þ
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and dimensionless ratios

a ¼ c55
l
* ; b ¼ c44

l
* ; c ¼ c45

l
* ð7Þ

It is noted that (5) does not restrict the sign of c45, and that c represents, in effect, the degree of non-

orthotropy in anti-plane strain. Eq. (6) defines an average shear modulus l
*
and shear wave speed v

*
in the

x1x2-plane of material symmetry. In the isotropic limit (6) gives the single classical modulus and wave speed

(Achenbach, 1973). In light of (6),

a þ b ¼ 2; ða � 1Þ2 þ c2 ¼ ðb � 1Þ2 þ c2 ¼ 1� C ð8Þ

where the dimensionless quadratic

C ¼ ab � c2 ð0 < C < 1Þ ð9Þ

is useful in characterizing material behavior. Its upper bound in (9) arises because ða; b; cÞ are real. Indeed,
C ¼ 1 only when a ¼ b ¼ 1, c ¼ 0, i.e. in the isotropic limit c44 ¼ c55, c45 ¼ 0.

3. Problem formulation

Consider two half-spaces of such materials, designated as solid 1 and solid 2. They are perfectly bonded

along a semi-infinite portion of their interface; a vanishingly thin flaw separates them over the remaining

portion. The solids are dissimilar, but each of their x3-principal material axes is parallel to the flaw edge, i.e.

their x1x2-planes of material symmetry coincide. In this common plane, however, the interface makes an

arbitrary angle /k ðj/kj < 180�Þ with the x1-principal axis of a solid k, where /1 6¼ /2.

For convenience the single Cartesian system ðx; y; zÞ in Fig. 1 is employed: The z-axis defines the flaw

edge and ðy ¼ 0; x < 0Þ and ðy ¼ 0; x > 0Þ define, respectively, the flaw and the perfectly bonded interface.
No generality is lost by placing solid 1 in half-space y > 0, and solid 2 in half-space y < 0. The xy-plane

coincides with the common plane of material symmetry, and the ðx; yÞ-axes are simple rotations of the

Fig. 1. Schematic of plane SH-wave system approaching flaw edge ðt < 0Þ.
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principal material ðx1; x2Þ-axes for a solid k through the angle /k. In view of (4a)–(9), with appropriate

subscripts added, one can write the field equations

1

l
*

k

ryzk ¼ Ck
owk
ox

þ Bk
owk
oy

;
1

l
*

k

rxzk ¼ Ak
owk
ox

þ Ck
owk
oy

ð10aÞ

Ak
o2wk
ox2

þ 2Ck
o2wk
oxoy

þ Bk
o2wk
oy2

¼ 1

v
*2

k

€wwk ð10bÞ

for y > 0 ðk ¼ 1Þ and y < 0 ðk ¼ 2Þ. Here wkðx; y; tÞ corresponds to u3 in a solid k, t represents time, and
formulas

Ak ¼ 1þ 1
2
ðak � bkÞ cos 2/k þ ck sin 2/k ð11aÞ

Bk ¼ 1þ 1
2
ðbk � akÞ cos 2/k � ck sin 2/k ð11bÞ

Ck ¼ 1
2
ðbk � akÞ sin 2/k þ ck cos 2/k ð11cÞ

define the tensor transformation ðAk;Bk;CkÞ in a solid k of the array ðak; bk; ckÞ due to the rotation /k (cf.
Eshelby et al., 1953). The formulas

dAk
d/k

¼ � dBk
d/k

¼ 2Ck;
dCk
d/k

¼ Bk � 1 ¼ 1� Ak ð12aÞ

Ak þ Bk ¼ 2; AkBk � C2
k ¼ Ck ð12bÞ

are also useful, and it is noted that (12b) define invariants of the transformation.
Both solids are at rest when a horizontally polarized shear (SH) wave in solid 1 is for t < 0, as depicted in

Fig. 1, incident upon the flaw at a travel angle of w with respect to the interface, where 0 < w < 90�. This
wave induces, in turn, reflected and transmitted plane SH-waves, with travel angle ðwr;wtÞ, respectively.
The three-wave system reaches the flaw edge at t ¼ 0 and is diffracted there. Linearity of (10a) and (10b)

allows the superposition

w1 ¼ ws
1 þ wi þ wr ðy > 0Þ; w2 ¼ ws

2 þ wt ðy < 0Þ ð13a; bÞ
Here ws

k is the scattered wave displacement field in a solid k, ðwi;wrÞ is the incident and reflected wave field

in solid 1, and wt is the transmitted wave field in solid 2. All fields satisfy (10a) and (10b) and, in addition,

the initial conditions

ws
k � 0 ðt6 0Þ ð14Þ

hold, and continuity requires that

wi þ wr ¼ wt ð15aÞ

ri
yz þ rr

yz ¼ rt
yz ðy ¼ 0Þ ð15bÞ

Perfect bonding for y ¼ 0, x > 0 and traction-free flaw surfaces for y ¼ 0, x < 0 can then be imposed for

y ¼ 0, t > 0 as conditions

ws
1 � ws

2 ¼ 0 ðx > 0Þ ð16aÞ

rs
yz1 ¼ rs

yz2 ¼ �r0
yz ðx < 0Þ ð16bÞ
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Here r0
yz is given by either side of (15b). In addition, ws

k should be finite for finite t > 0 and continuous in

y > 0 ðk ¼ 1Þ and y < 0 ðk ¼ 2Þ. Their gradients, however, may exhibit finite discontinuities at wavefronts,

and integrable singularities at ðx; yÞ ¼ 0.

4. Plane wave system

The plane SH-wave system consists of the displacements

wi ¼
Z ni

0

V ðnÞdn; ni ¼ t þ
x
v
cosw þ y

v
sinw > 0 ðy > 0Þ ð17aÞ

wr ¼
Z nr

0

VrðnÞdn; nr ¼ t þ
x
vr

coswr þ
y
vr

sinwr > 0 ðy > 0Þ ð17bÞ

wt ¼
Z nt

0

VtðnÞdn; nt ¼ t þ
x
vt

coswt þ
y
vt

sinwt > 0 ðy < 0Þ ð17cÞ

where ðv; vr; vtÞ are the travel velocities, and ðV ; Vr; VtÞ are bounded and at least piecewise continuous. In

light of (6), (10b) and (11a)–(11c)

v ¼
ffiffiffiffiffi
Ai

p
v
*

1; vr ¼
ffiffiffiffiffi
Ar

p
v
*
1; vt ¼

ffiffiffiffiffi
At

p
v
*

2 ð18Þ

where the positive dimensionless quantities

Ai ¼ 1þ 1
2
ða1 � b1Þ cos 2ð/1 þ wÞ þ c1 sin 2ð/1 þ wÞ ð19aÞ

Ar ¼ 1þ 1
2
ða1 � b1Þ cos 2ð/1 þ wrÞ þ c1 sin 2ð/1 þ wrÞ ð19bÞ

At ¼ 1þ 1
2
ða2 � b2Þ cos 2ð/2 þ wtÞ þ c2 sin 2ð/2 þ wtÞ ð19cÞ

arise. The continuity condition (15a) and (15b) requires that

cosw
v

¼ coswr

vr
¼ coswt

vt
ð20aÞ

Vr
V

¼ C1 þ B1 tanw � lðC2 þ B2 tanwtÞ
lðC2 þ B2 tanwtÞ � C1 � B1 tanwr

ð20bÞ

Vt
V

¼ B1ðtanw � tanwrÞ
lðC2 þ B2 tanwtÞ � C1 � B1 tanwr

ð20cÞ

where (11a)–(11c) holds and the dimensionless ratios (Brock and Achenbach, 1973)

l ¼ l
*

2

l
*

1

; m ¼ q1

q2

ð21Þ

are introduced. In view of (19a)–(19c), (20a) can be solved for the reflected and transmitted travel angles

2wr ¼ � tan�1 2 cosw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AiB1 � C1 cos2 w

p
2 cos2 w � Ai

� tan�1 2C1 cos
2 w

B1 þ C1 sin 2w
ð22aÞ
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2wt ¼ tan�1 2
ffiffiffiffiffiffi
lm

p
cosw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AiB2 � lmC2 cos2 w

p
2lm cos2 w � Ai

� tan�1 2lmC2 cos
2 w

Ai þ 2ð1� A2Þlm cos2 w
ð22bÞ

in terms of the incident wave angle w. The argument of the radical in (22a) is non-negative for all 0 <
w < 90�, but existence of real values for (22b) when

lmC2B1 > C1B2 ð23Þ

requires the restriction

2w > tan�1 2
ffiffiffiffiffi
B2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmC2B1 � C1B2

p

lmð2B2 � C2Þ
� tan�1 2B2C1

lmC2 þ 2ð1� A1ÞB2

ð24Þ

In the isotropic limit ðak ¼ bk ¼ 1; ck ¼ 0Þ results (17a)–(22b) reduce to those given by Brock and Achen-

bach (1973). Eqs. (20b) and (20c) can than be satisfied when

V ðnÞ ¼ T ðnÞffiffiffiffiffiffiffiffiffiffiffiffi
l
*

1

q1Ai

r ð25aÞ

VrðnÞ ¼
T ðnÞffiffiffiffiffiffiffiffiffiffiffiffi
l
*

1

q1Ai

r 1

D
1ffiffiffiffiffi
Ai

p ðCi

"
þ sinwÞ �

ffiffiffiffi
l
m

r
1ffiffiffiffiffi
At

p ðCt þ sinwtÞ
#

ð25bÞ

VtðnÞ ¼
T ðnÞffiffiffiffiffiffiffiffiffiffiffiffi
l
*

1

q1Ai

r B1

D
sinwffiffiffiffiffi
Ai

p
�

� sinwrffiffiffiffiffi
Ar

p
�

ð25cÞ

Here T ðniÞ is the traction induced by the incident wave in solid 1. The dimensionless parameters

ðD;Ci;Cr;CtÞ are

D ¼
ffiffiffiffi
l
m

r
1ffiffiffiffiffi
At

p ðCt þ sinwtÞ �
1ffiffiffiffiffi
Ar

p ðCr þ sinwrÞ ð26Þ

and, cf. (11a)–(11c) and (19a)–(19c),

Ci ¼ 1
2
ðb1 � a1Þ sinð2/1 þ wÞ þ c1 cosð2/1 þ wÞ ð27aÞ

Cr ¼ 1
2
ðb1 � a1Þ sinð2/1 þ wrÞ þ c1 cosð2/1 þ wrÞ ð27bÞ

Ct ¼ 1
2
ðb2 � a2Þ sinð2/2 þ wtÞ þ c2 cosð2/2 þ wtÞ ð27cÞ

In view of (17a)–(22b), the traction field removed from the flaw surface by (16b) is

r0
yz ¼ A0T t

�
þ x
v
cosw

�
y
�

¼ 0; x < 0; t þ x
v
cosw > 0

�
ð28aÞ

A0 ¼
ffiffiffiffi
l
m

r
B1

D
ffiffiffiffiffiffiffiffiffi
AiAt

p ðCt þ sinwtÞ
sinwffiffiffiffiffi
Ai

p
�

� sinwrffiffiffiffiffi
Ar

p
�

ð28bÞ

where A0 is a dimensionless traction amplitude factor.
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5. Scattered waves: solution procedure

Conditions (16a) and (16b) can in view of (28a) be put in Wiener–Hopf (Achenbach, 1973) form:

ws
1 � ws

2 ¼ W ðx; tÞ ð29aÞ

rs
yz1 ¼ rs

yz2 ¼ Rðx; tÞ � A0T t
�

þ x
v
cosw

�
Hð�xÞ ð29bÞ

Here Hð Þ is the Heaviside function, and ðW ;RÞ are, respectively, the interface flaw surface slip (relative

displacement) and traction ahead of the flaw edge. Thus,

R � 0 ðx < 0Þ ð30aÞ

W � 0 ðx > 0Þ ð30bÞ

W ! 0 ðx! 0�Þ ð30cÞ
and W is continuous for all x < 0 except perhaps when the argument of T vanishes, and R may be in-

tegrably singular when x! 0þ. Application of unilateral (Sneddon, 1972) and bilateral (van der Pol and

Bremmer, 1950) Laplace transforms

f̂f ðxÞ ¼
Z 1

0

f ðx; tÞe�pt dt ð31aÞ

~ff ¼
Z 1

�1
f̂f ðxÞe�pqx dx ð31bÞ

where ðp; qÞ are, respectively, positive real and imaginary, to (10a), (10b), (14), (29a) and (29b) gives

~wws
1 ¼

l
*

2a2 eWW e�pX1y

l
*

1a1 þ l
*

2a2
ðy > 0Þ; ~wws

2 ¼
�l

*

1a1 eWW e�pX2y

l
*

1a1 þ l
*

2a2
ðy < 0Þ ð32aÞ

� l
*

1a1l
*

2a2 eWW
l
*

1a1 þ l
*

2a2
¼ eRR � A0

bTT
pðsw � qÞ ðy ¼ 0Þ ð32bÞ

In these equations

sw ¼ 1

vw
¼ cosw

v
ð33aÞ

B1X1 ¼ C1qþ a1; B2X2 ¼ C2q� a2 ð33bÞ

ak ¼
ffiffiffiffiffi
Ck

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2k � q2

q
; sk ¼

1

ðcr v
*Þk

; crk ¼
ffiffiffiffiffi
Ck
Bk

r
ðk ¼ 1; 2Þ ð33cÞ

where (11a)–(11c) holds. Here ðsk; crk v
*
kÞ are, respectively, the shear wave slowness and speed in a solid k

along the interface, and ðsw; vwÞ are, respectively, the plane wave system slowness and speed along the

interface. In view of (6), (21) and (33b) the relation (23) that triggers restriction (24) arises when the

interface shear wave speed in solid 2 exceeds that in solid 1 (source of the incident wave). In light of

(22a)–(24),

sw > maxðs1; s2Þ ð34Þ
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Requiring ReðakÞP 0 in the q-plane with branches ImðqÞ ¼ 0; jReðqÞj > sk guarantees that (32a) is bounded
above.

Because ðR;W Þ arise from the scattered wave field, their transforms exist for, respectively, ReðqÞ >
�minðs1; s2Þ and ReðqÞ < sw. The bTT -term in (32b) exists for ReðqÞ < sw, its singularity is isolated, and the
coefficient of eWW is analytic in the strip jReðqÞj < minðs1; s2Þ. Therefore, a standard (Noble, 1958; Achen-

bach, 1973) decomposition process can be used to re-write (32b) in a form that equates a term that is

analytic for ReðqÞ > �minðs1; s2Þ to one that is analytic for ReðqÞ < sw. Because there is a common strip of

analyticity, both terms are, by Liouville�s theorem, equal to the same bounded entire function of ðp; qÞ.
However, (30c) requires in light of (31b) that pq eWW be bounded as jqj ! 1, which implies that the entire

function is in fact zero. Two equations result and, for the case s2 > s1, can be solved to give

eRR ¼ A0
bTT

pðsw � qÞ 1

�
� GþðswÞaþ2 ðqÞ
GþðqÞaþ2 ðswÞ

�
ð35aÞ

eWW ¼ A0
bTT

l
*

2p2
1

�
þ l

ffiffiffiffiffi
C2

C1

r �
GþðswÞG�ðqÞ
aþ2 ðswÞa�2 ðqÞ

1

sw � q ð35bÞ

In (35a) and (35b) the quantities

lnG
ðqÞ ¼
1

p

Z s2

s1

tan�1 la2ðsÞ
a01ðsÞ

ds
s 
 q ð36aÞ

a
k ðqÞ ¼ C1=4
k

ffiffiffiffiffiffiffiffiffiffiffiffi
sk 
 q

p
; a0kðqÞ ¼

ffiffiffiffiffi
Ck

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � s2k

q
ðk ¼ 1; 2Þ ð36bÞ

In (36b) a
k are analytic in the overlapping regions ReðqÞ > �sk, ReðqÞ < sk. In (36a) G
 are analytic in the

overlapping regions ReðqÞ > �s1, ReðqÞ < s1, and

GþðqÞG�ðqÞ ¼
a1 þ la2

a1 1þ l
ffiffiffiffi
C2

C1

q� � ð37Þ

Results for s1 > s2 follow by replacing l with 1/l in (35a)–(37), interchanging the subscripts (1,2), and
recognizing that the restriction (24) can now arise.

6. Maximum and minimum interface shear wave speeds

The interface shear wave speed parameters crk play a key role in (32a)–(37). In light of (12a) and (12b) it

can be shown that they achieve extremal values c
k for the principal material axis orientations

ð/

k ;/

þ
k � 180�;/�

k þ 180�Þ. For ck P 0,

/

k ¼ tan�1 1

ck

1

2
ðbk

�
� akÞ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ck

p �
ð38aÞ

c
k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1


ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ck

pq
ð38bÞ

In Table 1 (Panels A and B) values of (38a) are given for various (positive) values of ck for, respectively, the
cases ðak ¼ bk; bk ¼ 2akÞ. The corresponding maximums and minimums (38b) are also given. The entries
show that increasing the degree of non-orthotropy ck increases the maximum interface shear wave speed

ðcþk Þ beyond the isotropic limit ðc
k ¼ 1Þ, but lowers the minimum ðc�k Þ below the limit. In Table 1 (Panel A)
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/

k ¼ 
45� always, but Table 1 (Panel B) shows that increasing ck causes a greater deviation between the

principal material axes and the interface. The orientations /

k differ by 90� in both tables.

7. Scattered wave full fields

Combining (35b) with (32a) gives the scattered wave displacement transforms. The inversion operation

for (31b) is (van der Pol and Bremmer, 1950)

f̂f ðxÞ ¼ p
2pi

Z
~ff epqx dq ð39Þ

where integration is along a Bromwich contour. A standard (de Hoop, 1960; Brock and Achenbach, 1973)

technique changes this contour to one in the complex q-plane that gives an integrand that has the form of

the unilateral transform operation (31a). The scattered field follows by inspection. For an incident step-

stress pulse T ðnÞ ¼ TiHðnÞ, the result for ðy > 0; s2 > s1Þ is

ws
1 ¼

A0Ti

pl
*

1

GþðswÞ
aþ2 ðswÞ

Z t

s1r1

Re
aþ2 ðq1Þ
Gþðq1Þ

1

sw � q1

� �
ðt � sÞdsffiffiffiffiffi

C1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � s21r21

p
þ A0Tiffiffiffiffi

l
*

q
1
q1

ffiffiffiffiffi
Ai

B1

r
ðt � t1ÞHðt � t1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai � c2r1 cos2 w

p x
�

� C1

B1

y þ cr1r1ffiffiffiffiffi
Ai

p cosw < 0

�
ð40Þ

The result for ðy < 0; s2 > s1Þ is

ws
2 ¼ �A0Ti

pl
*

2

GþðswÞ
aþ2 ðswÞ

Z t

s2r2

Re
aþ2 ðq2Þ
Gþðq2Þ

1

sw � q2

� �
ðt � sÞdsffiffiffiffiffi

C2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � s22r22

p þ A0Ti

pl
*

1

GþðswÞ
aþ2 ðswÞ

�
Z s2r2

th

DðqhÞGþðqhÞ
sw � qh

ðt � sÞHðt � sÞdsffiffiffiffiffi
C2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22r

2
2 � s2

p x
�

� C2

B2

y >
s2
s1
r2

�
� A0Tiffiffiffiffiffi

l
*

2

q
q2

ffiffiffiffiffi
Ai

B2

r
ðt � t2ÞHðt � t2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai � c2r2 cos2 w

p x
�

� C2

B2

y þ cr2r2ffiffiffiffiffi
Ai

p cosw < 0

�
ð41Þ

Table 1

Maximum (þ) and minimum (�) shear wave speed parameters and orientations

ck Ck /þ
k (�) cþk /�

k (�) c�k

Panel A: ak ¼ bk
0.05 0.9975 45 1.0247 �45 0.9747

0.1 0.99 45 1.0488 �45 0.9478

0.25 0.9682 45 1.0854 �45 0.9065

0.5 0.866 45 1.1687 �45 0.7962

0.75 0.6614 45 1.2577 �45 0.6466

0.9 0.4359 45 1.3234 �45 0.4989

Panel B: bk ¼ 2ak
0.05 0.8864 85.7 1.1563 �4.7 0.8142

0.1 0.8789 81.7 1.161 �8.3 0.8075

0.25 0.8264 71.6 1.1902 �18.4 0.7638

0.5 0.6389 61.9 1.2653 �28.1 0.6317

0.75 0.3264 57 1.3493 �33 0.4234

0.9 0.0789 55.2 1.3999 �34.8 0.2007
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In (40) and (41) it is understood that integrals vanish when the lower limit exceeds the upper limit. The

qk ðk ¼ 1; 2Þ is the complex Cagniard contour parameterization

r2kqk ¼ � x
�

� Ck
Bk
y
�

s þ i

ffiffiffiffiffi
Ck

p

Bk
jyj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � s2kr2k

q
; rk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� Ck

Bk
y

� �2

þ Ck
B2
k

y2

s
ð42Þ

Result (41) also has a purely real Cagniard contour parameterization and integrand:

r22qh ¼ � x
�

� C2

B2

y
�

s þ
ffiffiffiffiffi
C2

p

B2

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22r

2
2 � s2

q
ð43aÞ

DðqÞ ¼ 1

�
þ l

ffiffiffiffiffi
C2

C1

r �
aþ2 ðqÞa2ðqÞa01ðqÞ

l2C2ðs22 � q2Þ þ C1ðq2 � s21Þ
ð43bÞ

The first terms in (40) and (41) represent scattered waves that radiate from the flaw edge in the expanding

regions ðy > 0; t > s1r1Þ and ðy < 0; t > s2r2Þ, respectively. The limits imposed on ðx; yÞ identify the last

terms in (40) and (41) as signals that cancel the plane wave assembly traction from the flaw surfaces in the

expanding wedge-shaped regions exterior to the first set of regions. In these expressions

t ¼ tk ¼
1

v
*
k
ffiffiffiffiffi
Ai

p
jyjffiffiffiffiffi
Bk

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai � c2rk cos2 w

q�
� xþ Ck

Bk
y
�

ðk ¼ 1; 2Þ ð44Þ

locate the planar fronts of these waves; (44) follows from (17b) and (17c) when ðvr;wr; vt;wtÞ are eliminated

in terms of ðv;wÞ. The limitations on ðx; yÞ identify the middle term in (41) as a head wave displacement in a

wedge-shaped region. Its planar front is defined by

t ¼ th ¼ s1 x
�

� C2

B2

y
�
�

ffiffiffiffiffi
C2

p

B2

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22 � s21

q
ð45Þ

Similar results follow when s1 > s2, except that now the head wave arises in ws
1.

Fig. 2. Schematic of wave diffraction at flaw edge ðt > 0Þ.
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A schematic of the various wavefronts (incident, reflected, transmitted, scattered) is given in Fig. 2. It is

noted that the expanding regions ðy > 0; t > s1r1Þ and ðy < 0; t > s2r2Þ are elliptical in shape. They are

centered at the flaw edge, and their semi-major and semi-minor axes correspond to the principal material

axes in each solid. The axis tilts with respect to the interface are due to the rotations /k in the guise of the
slope parameters Ck=Bk.

8. Traction behavior near the flaw edge

Superposition gives the interface traction as R þ r0
yz ðy ¼ 0; x > 0Þ. Results for R near ðx! 0þÞ the flaw

edge can be obtained directly from (35a) or its counterpart for s1 > s2 by allowing jqj ! 1 and keeping

only the highest-order terms. The result is easily inverted with (39) and standard tables (Peirce and Foster,

1956; Sneddon, 1972):

R ¼ A0C
1=4
2

p
ffiffiffi
x

p GþðswÞ
aþ2 ðswÞ

Z t

0

T ðsÞdsffiffiffiffiffiffiffiffiffiffi
t � s

p þOð1Þ ðy ¼ 0; x! 0þÞ ð46Þ

Clearly this term dominates the plane wave assembly contribution r0
yz, and the coefficient of 1=

ffiffiffi
x

p
is the

dynamic stress intensity factor.

9. Solution behavior: two cases

For insight into the effects of non-orthotropy, two simple but non-standard cases are considered.

Case A: The principal axis orientation for incident wave-bearing solid 1 is defined by (38a). Solid 2 is

isotropic, but its properties closely match those of solid 1 in the sense that l ¼ m ¼ 1. That is, the densities

are identical, the average modulus in solid 1 and the classical modulus in solid 2 match, and the interface

shear wave speed in solid 1 is either a maximum or a minimum. In view of (21)–(24), (38a) and (38b)

wr ¼ �w ð/1 ¼ /

1 ; 0 < w < 90�Þ ð47aÞ

w ¼ wþ; w
 ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1


ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C1

p
cos 2w

cos2 w
� 1

s
ð/1 ¼ /þ

1 ; 0 < w < 90�Þ ð47bÞ

wt ¼ w� /1

0@ ¼ /�
1 ; sin

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C1

p

1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C1

p

s
< w < 90�

1A ð47cÞ

Table 2 (Panels A and B) provides data for (47b) and (47c) for various values of c1 P 0 when

ða1 ¼ b1; b1 ¼ 2a1Þ, respectively. The entries show that non-orthotropic ! isotropic transmission of the

incident wave involves an increasing change in travel direction as the degree of non-orthtropy c1 is in-

creased. It should be noted that an exception occurs for w ¼ 45�; then both possible travel directions are

also 45�. Missing entries for w� reflect that the inequality in (47c) is violated; that is, a transmitted wave is

precluded for a given combination ðw; c1Þ.
For the less-restrictive ð0 < w < 90�Þ case of the maximum interface shear wave speed ð/1 ¼ /þ

1 ;
cr1 ¼ cþ1 Þ formula (46) reduces to
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R ¼ K
p
ffiffiffi
x

p
Z t

0

T ðsÞdsffiffiffiffiffiffiffiffiffiffi
t � s

p þOð1Þ ðy ¼ 0; x! 0þÞ ð48Þ

Here the dynamic stress intensity factor coefficient K is given by

K ¼
2

ffiffiffiffiffi
v
*
1

q
F sinw

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffi
M

p
cosw

q ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C1

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � cos2 w

p
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C1

p
Þ sinw þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � cos2 w

p ð49aÞ

M ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C1

p
cos 2w ð49bÞ

ln F ¼ 1

p

Z cþ
1

1

tan�1 1ffiffiffiffiffi
C1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcþ1 Þ

2 � s2

s2 � 1

s
ds

s þ cþ1
ffiffiffiffiffi
M

p
cosw

ð49cÞ

The purely isotropic limit of (48) arises for the diffraction of a plane SH-wave by a crack in a homogeneous

material. Eq. (48) then has the factor K0 ¼
ffiffiffiffi
v0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosw

p
, where v0 is the classical (Achenbach, 1973)

shear wave speed. The matching conditions l ¼ m ¼ 1 guarantee that v
*

1 ¼ v0, so that the dimensionless

ratio

K
K0

¼ 2F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosw

p
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffi
M

p
cosw

q ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C1

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � cos2 w

p
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C1

p
Þ sinw þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � cos2 w

p ð50Þ

varies only withðw;C1Þ. It can be demonstrated that

0 <
K
K0

< 1;
d

dC1

K
K0

� �
P 0 ð0 < C1 < 0Þ; K

K0

! 0 ðC1 ! 0Þ ð51a; bÞ

Relation (50) and (51a,b) imply that the diffraction of the plane SH-wave in the non-orthotropic/isotropic

system produces a smaller dynamic stress intensity factor than diffraction in the homogeneous isotropic

material. Moreover, the difference increases as non-orthotropy is increased ðc1 ! 1;C1 ! 0Þ. Thus, even
when the properties of the bimaterial are similar, i.e. l ¼ m ¼ 1, proper orientation of the non-orthotropic

constituent can perhaps give an advantage in avoiding fracture over a homogeneous solid identical to the
isotropic constituent.

Table 2

Case A: transmitted wave angles for maximum (þ) and minimum (�) interface shear wave speeds vs. ðc1;wÞ
c1 15�: wþ (�) 15�: w� (�) 30�: wþ (�) 30�: w� (�) 60�: wþ (�) 60�: w� (�) 75�: wþ (�) 75�: w� (�)

Panel A: a1 ¼ b1

0.05 19 9.1 31.2 28.7 59.6 60.4 74.7 75.3

0.1 22.1 – 32.3 27.3 59.1 60.8 74.3 75.6

0.25 28.9 – 35.3 22.2 57.7 61.9 73 76.4

0.5 36.2 – 39.2 0.0 54.7 63.4 69.9 77.5

0.75 41.2 – 42.4 – 50.8 64.8 64 78.4

0.9 43.6 – 44 – 47.6 65.5 56.6 78.8

Panel B: b1 ¼ 2a1

0.05 31.8 – 36.8 18.2 56.7 62.4 72.1 76.8

0.1 32.2 – 37 17.7 56.6 62.5 72 76.9

0.25 34.1 – 38 13.3 55.8 62.9 71.1 77.2

0.5 38.4 – 40.6 – 53.3 64 68.1 77.9

0.75 42.4 – 43.2 – 49.4 65 61.2 78.6

0.9 44.4 – 44.6 – 46.1 65.7 51 79
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Case B: Now take solid 1 as isotropic, with l ¼ m ¼ 1, and the principal axis orientations and interface

shear wave speed parameters given by (38a) and (38b). In this instance,

wr ¼ �w ð/2 ¼ /

2 ; 0 < w < 90�Þ ð52aÞ

wt ¼ wþ /2

 
¼ /þ

2 ; sin
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
s

< w < 90�

!
ð52bÞ

wt ¼ w�; w
 ¼ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 w �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
cos2 w

1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
cos2 w

s
ð/2 ¼ /�

2 ; 0 < w < 90�Þ ð52cÞ

Table 3 (Panels A and B) provide data for (52b) and (52c) for various values of c2 > 0 when ða2 ¼
b2; b2 ¼ 2a2Þ, respectively. Entries show that isotropic! non-orthotropic incident wave transmission, like

its case A converse, involves an increasing deviation of incident and transmitted wave travel directions as

non-orthotropy is increased. An exception occurs again for w ¼ 45�, when w
 ¼ 45�, and missing entries

show that wave transmission is precluded when, in this instance, restrictions (52b) arise for the maximum

interface shear wave speed case.

For the less-restrictive ð0 < w < 90�Þ case of minimum shear wave speed, the dimensionless ratio (50) is

now

K
K0

¼ 2F ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
Þ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosw

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

pp
cosw

q M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

pp
sinw þ

ffiffiffiffiffi
M

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

pp ð53aÞ

M ¼ sin2 w þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
cos2 w ð53bÞ

ln F ¼ 1

p

Z 1=c�
2

1

tan�1
ffiffiffiffiffi
C2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=c�2 Þ

2 � s2

s2 � 1

s
ds

s þ cosw
ð53cÞ

Here v
*
2 ¼ v0, and (51a,b) again holds, but with C1 replaced by C2. Thus, increasing the degree of non-

orthotropy again decreases the dynamic stress intensity factor below the value achieved for diffraction in a

Table 3

Case B: transmitted wave angles for maximum (þ) and minimum (�) interface shear wave speeds vs. ðc2;wÞ
c2 15�: wþ (�) 15�: w� (�) 30�: wþ (�) 30�: w� (�) 60�: wþ (�) 60�: w� (�) 75�: wþ (�) 75�: w� (�)

Panel A: a2 ¼ b2

0.05 8.6 18.8 28.6 31.1 60.4 59.6 75.3 74.7

0.1 – 21.6 27 32.1 60.9 59.2 75.7 74.4

0.25 – 26.9 18.4 34.3 62.4 58.2 76.8 73.5

0.5 – 31.7 – 36.7 65.9 56.8 79.1 72.1

0.75 – 34.4 – 38.2 71.6 55.7 82.2 71

0.9 – 35.6 – 38.9 77.7 55.1 85 70.3

Panel B: b2 ¼ 2a2

0.05 – 28.9 – 35.3 63.5 57.7 77.5 73

0.1 – 29.2 – 35.4 63.6 57.6 77.6 72.9

0.25 – 30.4 – 36 64.6 57.2 78.3 72.6

0.5 – 33 – 37.4 67.8 56.3 80.2 71.6

0.75 – 35 – 38.5 74 55.4 83.3 70.6

0.9 – 36 – 39.1 82 54.9 86.8 70.1
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homogeneous isotropic solid. Again, the bimaterial factor vanishes when the non-orthotropy parameter

reaches its limit value of unity.

10. Some comments

This article considered the diffraction of a plane SH-wave by an interface flaw in a bimaterial consisting

of two non-orthotropic linearly elastic solids. Each solid had only a single plane of material symmetry and,
while these coincided, orientations of the principal material axes in the common plane were arbitrary, both

with respect to each other and with respect to the interface and the direction of travel of the SH-wave.

An exact transient analysis gave the full-field displacements in each solid, and the interface traction just

ahead of the flaw edge. These expressions and related formulas showed that the speeds of the incident,

reflected and transmitted plane waves, and the travel directions of the latter two with respect to the former,

are sensitive to the principal material axis orientations, as well as the elastic properties themselves. Study of

the scattered wave field showed that this sensitivity is also manifest in the shear wave speeds in each solid.

Principal material axis orientations for each solid were readily found that guaranteed maximum and
minimum speeds along the interface. Calculations showed that the maximum and minimum values lay,

respectively, above and below the isotropic limit, and that deviations from the limit increased with the

degree of non-orthotropy.

To focus on the effects of non-orthotropy and material orientation, results were specialized for two cases

of a non-orthotropic/isotropic bimaterial. In one, the incident wave arose in the homogeneous solid; in the

other, plane wave transmission was into the homogeneous solid. In both cases, the non-orthotropic and

isotropic properties closely matched, and the principal axis orientations for the non-orthotropic solid were

chosen to give maximum or minimum shear wave speeds along the interface. Calculations for both cases
showed that deviation in the travel directions of the incident and transmitted plane waves increased with the

degree of non-orthotropy, and that non-orthotropy by itself might preclude plane wave transmission.

The dynamic stress intensity factors for these two illustrations showed analogous behavior: Their values

always lay below that for plane wave diffraction in a homogeneous solid of a material identical to that of

the isotropic constituent of the bimaterial. The discrepancy increased with non-orthotropy, and the bi-

material factor could indeed be forced to zero when non-orthotropy reached a theoretical limit.

Control of elastic wave transmission and prevention of diffraction-induced dynamic failure in layered

solids are common research topics (Liu et al., 2001; Ma et al., 2001), and use of elastic property mis-
matching is a well-known aspect of these (Brock and Achenbach, 1973). It is hoped that the present study

has demonstrated, both through its exact results and somewhat general model, and its examination of two

special cases, the importance of considering material orientation and non-orthotropy.

The class of materials considered here lends itself well to anti-plane strain situations. While useful for

insight, these are generally not as applicable as in-plane loading situations. For that reason alone, the exact

results presented here were not fully exploited through e.g. use of more general parameter variations. As

noted by Eshelby et al. (1953), certain tractable in-plane situations can also be studied for this material

class. Interface flaw work is underway on some of these, as well as for standard (Payton, 1983; Brock et al.,
2001; Brock and Hanson, in press) transversely isotropic and orthotropic materials. The present analysis is

serving as a guide.
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